

CSL | Coordinated Science Lab college of Engineering Subho S. Banerjee, James Cyriac, Saurabh Jha, Zbigniew T. Kalbarczyk and Ravishankar K. Iyer Computer Science, Electrical and Computer Engineering

Towards a Bayesian Approach for Assessing the Fault Tolerance of Deep Neural Networks

csl.illinois.edu

Fault Injection Tools in Neural Networks

- Fault injection is one of the primary methods for assessing reliability validation/assessment
- Fault injection in NNs is difficult
 - Large space of fault locations and program states that must be injected/investigated
 - Need for significant system support to build system-specific injectors
 - Inability to provide statistical guarantees
- Question: Can we address these challenges by taking cognizance of latest developments in the machine learning space dealing with deep learning?

Bayesian Deep Learning & Fault Modelling

Deep Learning is **compositions of functions on matrices**.

Bayesian deep learning is **composition of functions on probability distribution of matrices**.

BDLFI: Bayesian Deep Learning Fault Injector

Looking Forward

- What advantage does this method give us?
- **Case 1:** Algorithmic Acceleration: *Fault injection == Monte Carlo*
 - Gradient-based Monte Carlo methods (NUTS sampler)
 - Importance sampling
- Case 2: Automate Reliable DL: AutoML/Neural Architecture Search
 - Design space: Duplication, TMR...
 - Approximations: Voltage scaling, DRAM refresh rate