ILLINOIS CSL | Coordinated Science Lab COLLEGE OF ENGINEERING

Saurabh Jha, **Subho S. Banerjee**, James Cyriac, Zbigniew T. Kalbarczyk and Ravishankar K. Iyer

Computer Science, Electrical and Computer Engineering

AVFI: Fault Injection for Autonomous Vehicles

csl.illinois.edu

Fault Injection to Measure Resilience of AVs

- Recent media attention on Tesla/Waymo/Uber AVs
- Resilience and Safety characteristics vary across computing kernels and computing systems
- Research Gap: Methods to Assess End-to-End Resilience of AVs not available

TRANSPORTATION \setminus UBER \setminus RIDE-SHARING \setminus

Uber self-driving car saw pedestrian but didn't brake before fatal crash, feds say

The report is more interesting for what it doesn't say than what it does By Andrew J. Hawkins | @andyjayhawk | May 24, 2018, 11:07am EDT

Safety and Reliability Issues [Banerjee et al., DSN 2018]

- Data and Machine Learning: 64% of reports were problems in the machine learning system (perception, control)
- Compute system-related: 30% or more due to failures in computing stack (e.g., watchdogs, networks)
- Human in the loop: Human in the loop systems (driver + other cars), have to anticipate the other actors on the roads

1 COLLEGE OF ENGINEERING

csl.illinois.edu

Challenges

- Heterogeneity of system components makes this a challenging problem
 - Complex integration of Sensors, ML, Actuators, Mechanical Components
 - Significant heterogeneity in AV systems: Bayesian Learning, DNNs...
- Interplay between uncertainty at system level: HW/SW faults & algorithmic faults (ML prediction errors)
 - Unknown Inputs and Inaccuracies in ML predictions
 - Data faults vs Hardware faults
- No robust resilience metrics: Understanding propagation and masking to evaluate safety violations
 - Masking of faults and errors at hardware, software and traffic-levels

csl.illinois.edu

ILLINOIS CSL | Coordinated Science Lab

AVFI Design

[1] Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." *arXiv preprint arXiv:1711.03938* (2017)

csl.illinois.edu

Example Injections

30

csl.illinois.edu

Fault Injection Results

Input Sensor Fault Injection

Delay Injection

- Sensor models: GPS, LIDAR, RADAR, SONAR
- Network failure Clock synchronization, Route Planning

csl.illinois.edu

Looking Forward

- Need for End-to-End resilience safety assessment
 - Holistic view of at system stack
 - Need to focus beyond DNNs
 - Traffic resilience needs to be accounted
- Fault injection is challenging: Time Coverage trade off
- Improve system resilience by targeting most vulnerable kernels and system units

Questions?

Code: Simulator + Injector

Simulator – <u>https://github.com/carla-simulator/carla</u> Injector – <u>https://gitlab.engr.illinois.edu/DEPEND/av-imitation-learning-fault-injection</u>

COLLEGE OF ENGINEERING

7

csl.illinois.edu