
AVFI: Fault Injection for Autonomous Vehicles

Saurabh Jha§, Subho S. Banerjee§, James Cyriac†, Zbigniew T. Kalbarczyk† and Ravishankar K. Iyer†§
§Department of Computer Science, †Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.

I. INTRODUCTION

Autonomous vehicle (AV) technology is rapidly becoming a
reality on U.S. roads, offering the promise of improvements in
traffic management, safety, and the comfort and efficiency of
vehicular travel. With this increasing popularity and ubiquitous
deployment, resilience has become a critical requirement
for public acceptance and adoption. Recent studies into the
resilience of AVs have shown that though the AV systems are
improving over time, they have not reached human levels of
automation [1]. Prior work in this area has studied the safety
and resilience of individual components of the AV system (e.g.,
testing of neural networks powering the perception function
[2], [3]). However, methods for holistic end-to-end resilience
assessment of AV systems are still non existent.

This paper presents AVFI (the Autonomous Vehicle Fault
Injector), an important step towards constructing a methodology
for end-to-end resilience assessment of AV systems using
fault injection. The tool empirically validates the robustness
of an AV system by introducing faults to test AV resilience
in situations that might otherwise be rarely tested. AVFI
leverages a state-of-the-art AV simulation framework presented

in [4], and can perform fault injections in sensor inputs (e.g.,
following camera or LIDAR fault models), in neural networks
controlling the motion of the AV (e.g., to identify susceptibility
to random and adversarial noise in the training procedure), and
in hardware/software components (e.g., transient/permanent
faults in processing fabric). The AVFI approach uniquely
quantifies meaningful domain-specific failure metrics, e.g.,
number of traffic violations per kilometer driven, mission
success rate and time to traffic violation. By using those
metrics to evaluate safety, we demonstrate their comprehensive
value. AVFI achieves those goals so by simulating real worlds,
describing behavior of cars and pedestrians moving in that
world, and evaluating resilience metrics. Overall, we believe
that AVFI can positively influence the development and holistic
testing of AV systems.

Our preliminary results validate AVFI’s ability to introduce
faults that lead to traffic violations. Those results are supported
by failure characterization studies of AVs in the real world [1].
Our findings reiterate the need for experimentation and analysis
of failure models and modes for AVs.

World Simulator: Unreal Engine + CARLA

Vehicle
Models

Sensor
Models

Rendering
Engine Physics Engine Environment

Model

Sensor Faults
(e.g., Camera)

Occlusions

Water Droplets

Camera Noise Models

Autonomous Driving Agent
Resilience

Metrics

Mission Success Rate

Traffic Violations per KM

Time to Traffic Violation

AV Neural
Networks

RNN

Fully Connected
Layer

Perception
CNN
Localization
CNN
Motion Planning
CNN

Ti
m

e

ActionsNeural Network - Perception, Localization, PlanningInput Sensor Readings

Fault Localizer Fault Injector

Camera, Location

Input FI

NN FI

Output FI

Timing FIti

ti+1

ti+2

Route Planning

Goal

2

1

3 4
5 6

Figure 1. Overview of the AVFI approach: AVFI injects faults into sensor-compute-actuation systems of an autonomous vehicle.

Figure 2. Mission success rate for an autonomous
vehicle with different input fault injectors.

Figure 3. Distribution of violations per km driven
with different input fault injectors.

Figure 4. Distribution of violations per km with
increasing output delay between ADA and actuation.

55

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

2325-6664/18/$31.00 ©2018 IEEE
DOI 10.1109/DSN-W.2018.00027

II. AVFI: AUTONOMOUS VEHICLE FAULT INJECTOR

Our approach (see Fig. 1) uses (a) CARLA [4] as an urban
driving simulator, (b) the approach described in [5] as an ADA
(Autonomous Driving Agent) to control the AV and (c) AVFI
as fault injection-based assessment engine for the ADA. AVFI
has inbuilt fault models and provides methods for statistical
analysis of traffic violations.

Autonomous Driving Agent & World Simulator. CARLA
is an open urban driving simulator (1 1). CARLA operates by
running two components, the server and the client. The server is
responsible for generating the virtual urban environments, and
the client functions as an ADA. The server leverages Unreal
Engine (popularly used in video games) as its rendering and
physics engine. CARLA has an inbuilt library of urban layouts,
buildings, pedestrians, vehicles, and weather conditions (e.g.,
sunny, rainy, and foggy) that can be used to simulate an urban
environment. Further, it provides a variety of sensors (e.g.,
camera, GPS, LIDAR) to use in AV simulations.

The ADA uses the approach described in [5] as the controller;
that in turn, uses an imitation learning-based convolution neural
network (IL-CNN) for perception, planning, and localization
(2). In our test environment, the client is fed from a forward-
facing RGB camera sensor on the hood of the AV. The server
sends sensor data, along with other measurements of the car
(e.g., speed, location) to the client. The controller is responsible
for perception of sensor inputs and for producing an action that
describes the behavior of the AV. Its decisions are then sent
from the client to the server, which applies those commands to
the AV’s actuators. In that way, an AV can complete missions,
i.e., navigating between way points in the simulated world.

Fault Models and Injector. AVFI runs fault injection
campaigns in two steps: (a) selecting the location of faults (3)
(e.g., choosing specific neurons and layers in the IL-CNN) and
(b) injecting the faults into the chosen locations using the fault
models mentioned below (4). Broadly, AVFI can inject the
following four classes of faults into the ADA.
• Data Faults: AVFI injects data faults by manipulating sensor

measurements (such as camera images, LIDAR, and GPS)
or world measurements (such as car spee or weather type)
taken by the AV system. In the real world, sensor inputs
can change because of (a) faulty sensors, (b) changes in the
external environment (such as fog or rain), and (c) unseen
perturbations of images (such as broken road sign posts). For
example, AVFI intercepts the RGB camera sensor data from
the server, modifies the image according to a sensor-specific
fault model (5), and then forwards it to the IL-CNN.

• Hardware Faults: AVFI injects hardware faults by injecting
single-bit, multiple-bit, and stuck-at faults in the hardware
components of the autonomous systems, such as processors,
sensors, software, and communication networks. For example,
AVFI can intercept and corrupt a control command from the
IL-CNN and then forward it to the server.

• Timing Faults: AVFI injects timing faults into the communi-
cation paths of the network, resulting in (a) delays in flow
of data from one component of the AV system to another,
(b) loss of data, or (c) out-of-order delivery of the data
packets. For example, AVFI pauses the output of IL-CNN

1 * refers to annotations in Fig. 1.

for k frames and either replays or drops the outputs.
• Machine Learning Faults: Errors in the machine learning

models (such as neural networks) during training or at
runtime will lead to prediction errors. AVFI injects faults
into the neural network by adding noise into the parameters
of the machine learning model (e.g., weights of the neural
network), which is modeled on real-world hardware failures.
Resilience Assessment. AVFI reports the following re-

silience metrics (6).
• Mission Success Rate (MSR) is the percentage of times that

the autonomous agent was able to complete a navigation
mission in a fixed amount of time. Higher MSR values are
representative of higher resiliency.

• Traffic Violations Per KM (VPK) is the number of traffic
violations (including lane violations, driving on the curb, and
collisions with pedestrians, cars, and other objects on the
streets) per kilometer driven in a fault injection campaign.
Lower VPK values are representative of higher resiliency.

• Accidents Per KM (APK) is the number of accidents (i.e.,
collisions with pedestrians/cars/etc.) per kilometer driven in
a fault injection campaign.

• Time to Traffic Violation (TTV) is the time between a fault
injection and its manifestation as a traffic violation. Higher
values of TTV imply that the system has more time to detect
and correct its state to avoid traffic violations.

III. PRELIMINARY RESULTS
Initial experiments using AVFI on the IL-CNN-based ADA

presented in [4] have shown promising results and point to
the need for further experimentation and analysis of failure
models and modes for deep-learning-based ADA.

Fig. 2 shows the increase in variance of the mission success
rate with varying sensor fault models across multiple test
scenarios. Fig. 3 shows a similar increase in variability of
traffic violations per km driven across a range of sensor fault
injectors. The variability suggests that the overall decrease in
success rate is correlated to the increase in traffic violations per
km. Fig. 4 shows a significant increase in the number of traffic
violations per km with the introduction of delays between the
generation of output from the agent’s neural network and its
actuation in the world model (i.e., using AVFI’s timing fault
injector). Our simulation environment is configured to run at
15 frames per second; hence, a delay of 30 frames in Fig. 4
corresponds to an overall delay of a mere 2 s between decision
and actuation. Our results and those in [1] (e.g., data from
Nissan), indicate a need to explore the real-time nature and
constraints associated with the AV.

REFERENCES

[1] S. S. Banerjee et al., “Hands off the wheel in autonomous vehicles? A
systems perspective on over a million miles of field data,” in Proc. of the
48th Annual IEEE/IFIP International Conf. on Dependable Systems and
Networks (DSN), June 2018.

[2] G. Li et al., “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proc. International Conf.
for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 8:1–8:12.

[3] K. Pei et al., “DeepXplore: Automated whitebox testing of deep learning
systems,” in Proc. of the 26th Symposium on Operating Systems Principles,
2017, pp. 1–18.

[4] A. Dosovitskiy et al., “CARLA: An open urban driving simulator,” in
Proc. of the 1st Annual Conf. on Robot Learning, 2017, pp. 1–16.

[5] F. Codevilla et al., “End-to-end driving via conditional imitation learning,”
in Proc. of International Conf. on Robotics and Automation (ICRA), 2018.

56

