On Accelerating Pair-HMM Computations in Programmable Hardware
Contributions

• Design and implementation for an accelerator to compute the Forward Algorithm (FA) on Pair-Hidden Markov Models (PHMM) models.

• Demonstrate value of the accelerator supporting computational genomics workflows where PHMM is used to identify mutations in genomes.

• Optimize accelerator architecture for both the algorithm and common input data characteristics.

• Reduce compute time: \textbf{14.85\times higher throughput}.

• Reduce operational cost (in terms of energy consumption): \textbf{147.49\times higher throughput per unit energy}.
Forward Algorithm on Pair-HMM Models

- PHMM models are Bayesian multinets that allow for a probabilistic interpretation of the alignment problem
 - An alignment models the homology between two sequences via a series of mutations, insertions, and deletions of nucleotides.

- FA algorithm computes of statistical similarity by considering all alignments between two sequences and computing the overall alignment probability by summing over them

- Can be described by the following equations

\[
\begin{align*}
 f_M(i, j) &= P(a_{mm}f_M(i - 1, j - 1) + a_{im}f_I(i - 1, j - 1) + a_{dm}f_D(i - 1, j - 1)) \\
 f_I(i, j) &= a_{mi}f_M(i - 1, j) + a_{ii}f_I(i - 1, j) \\
 f_D(i, j) &= a_{md}f_M(i, j - 1) + a_{dd}f_D(i, j - 1)
\end{align*}
\]
PHMM Forward Algorithm in Bioinformatics

• PHMMs form the basis of the variant detection tool GATK HaplotypeCaller

• Used to pick n-best haplotypes from by maximizing likelihood of a read originating from the haplotype
 • FA algorithm used

• Constitutes >70% of the runtime of the GATK HaplotypeCaller

• Executes >3E7 times for a standard clinical human dataset

Diagram from GATK Documentation: https://software.broadinstitute.org/gatk/documentation/article.php?id=4148
Shortcomings of Related Work

- Past work explores use of FPGAs/ASICs
 - Based on systolic array designs
 - Exploit anti-diagonal parallelism in recurrence pattern

- Common shortcoming is that they are optimized only for the algorithm and not input data characteristics
 - Input size variability can lead to idle cycles for systolic array based designs.

CDF shows nearly uniform distribution of input sizes for small (<250) and large (>350) input string size for computation on NA12878 sample.
Our Design

• **Design Goal:** Optimize design to execute different input sizes in parallel
 - Expend chip budget on maximizing inter-task parallelism
 - Handle intra-task parallelism through aggressive pipelining

Diagram:

- **Host-accelerator interface using IBM CAPI**
- **Out of order issue unit to PEs as well as write back logic encapsulated in the bus scheduling strategy**
- **Specialized data path and schedule to ensure that there are no idle cycles while computing**
- **Memory scheduler minimizes scratchpad buffer size used to store intermediate results in Scratchpad buffer**

Technical Details:

- 250 MHz
 - Internal Cache
 - CAPI Controller

- 250 MHz
 - Array of PEs
 - Serializer
 - Bus Schedule

- 400 MHz
 - Address Generator
 - Address Scheduler
 - Memory Scheduler

- IEEE-754 encoded "a" parameters
- Scratchpad Buffer
- Quality to "a" parameter lookup table
- PHMM Data Path
Processing Element (PE) Design

• **Goal:** Schedule operations to minimize idle cycles
 • Schedule presented above has no idle cycles
 • Schedule temporally multiplexes the adders and multipliers
 • Entire pipeline is 8-deep (8 Operations in flight at a time)
Minimize Storage Requirements

• Temporary scratchpad space is required to store intermediate outputs produced from the FA algorithm

• We minimize this space by following the anti-diagonal recursion pattern of the FA algorithm

• As a result, we need only $O(L)$ space instead of $O(L^2)$ space to store entire matrix.
Dealing with Accelerator Invocation Overheads

• Accelerator invocation overhead significantly reduces performance because of OS overhead of initializing accelerator
• Solution: Amortize cost of accelerator invocation by batching multiple invocations
 • OS sends batch of tasks to acc. Hardware dist across PEs
• Demonstrate several approaches to select task batches
 • Simple task batching
 • Common prefix memoization
 • FA on partially ordered strings

Task batching: Significant drop in mean latency of a PHMM task when OS overhead is amortized over large batches
Common Prefix Memoization

• Similar inputs to PHMM) have common prefixes
• Naïve algorithm recomputes PHMM for all pairs of strings
• Our solution:
 • Construct a prefix trie to find the longest common prefix in an input task batch
 • Compute PHMM FA for prefix only once
 • Saves compute time and host-accelerator bandwidth
• Example
 • (AAACGCA, AAACCGG); (AAACGCC, AAACCGG); (AAACGCG, AAACCGG)
 • Read (Input 1) has common prefix for a single haplotype (Input 2)
 • Construct TRIE for Input 1
 • Precompute matrix for prefix on accelerator
 • Compute last row and column on host CPU
FA on Partially Ordered Strings

- Inputs to the PHMM accelerator in GATK is computed from DeBruijn graphs

- **Core Idea:**
 - Do not dispatch multiple paths from DeBruijn graphs as separate tasks
 - Dispatch entire graph at same time

- Present an extension of the POA algorithm [1] for computing FA between single read and entire DeBruijn graph

Results: Performance Benchmarking

Performance of the accelerator in a PHMM micro-benchmark

- 14.85x higher throughput than an 8-core CPU baseline (that uses SIMD and multi-threading)
- 147.49x improvement in throughput per unit of energy expended

Performance of the end-to-end GATK HaplotypeCaller application

- 3.287x speedup over CPU-only baseline
- 3.48x is maximum attainable speedup according to Amdahl’s Law
Results: On-Chip Resource Utilization

- The use of logic slices is the limiting factor
- Potential for larger gains in micro-benchmark performance for larger FPGAs
 - Memory bandwidth becomes a bottleneck [Simulation results in paper]
- Negligible gains to be had in terms of end-to-end application performance
 - Already close to Amdahl’s law limit

Physical Layout on a Xilinx XC7VX6905T

Number of PEs

Utilization (%)

- Slices
- BRAM
- DSP

Power (W)

Number of PEs

Static
Dynamic
GTH

Clock 31%
Signals 31%
Logic 10%
BRAM 13%
DSP 8%
PCIe 4%
MMCM 4%
Conclusions

• We demonstrate an FPGA based accelerator for the PHMM FA algorithm that achieves
 • 14.85× higher throughput than CPU baseline
 • 147.49× higher throughput per unit energy expended

• Immediate application in variant discovery and genotyping workloads

• Takeaway: Design methodology of using input data characteristics in addition to algorithmic characteristics to specialize accelerator design can be more generally
Questions?

• Code available at https://github.com/CSLDepend/PairHMM
• Email authors at ssbaner2@illinois.edu